少妇AV一区二区三区无|久久AV电影一区三|日本一级片黄色毛片|亚洲久久成人av在线久操|黄色视频在线免费看呀一区二区|综合精品视频精品久久久浪朝|亚洲午夜成人资源|欧美黄色一级片黑寡妇|内射无毛少妇特写|无码农村夜晚偷拍啪啪

高一年級數學教案:等比數列的前n項和

時間:2018-05-08 14:11:00   來源:無憂考網     [字體: ]
【#高一# #高一年級數學教案:等比數列的前n項和#】心無旁騖,全力以赴,爭分奪秒,頑強拼搏腳踏實地,不驕不躁,長風破浪,直濟滄海,我們,注定成功!©無憂考網高一頻道為大家推薦《高一年級數學教案:等比數列的前n項和》希望對你的學習有幫助!

  【篇一】

  教學目標

  1.掌握等比數列前項和公式,并能運用公式解決簡單的問題.

 。1)理解公式的推導過程,體會轉化的思想;

 。2)用方程的思想認識等比數列前項和公式,利用公式知三求一;與通項公式結合知三求二;

  2.通過公式的靈活運用,進一步滲透方程的思想、分類討論的思想、等價轉化的思想.

  3.通過公式推導的教學,對學生進行思維的嚴謹性的訓練,培養(yǎng)他們實事求是的科學態(tài)度.

  教學建議

  教材分析

  (1)知識結構

  先用錯位相減法推出等比數列前項和公式,而后運用公式解決一些問題,并將通項公式與前項和公式結合解決問題,還要用錯位相減法求一些數列的前項和.

  (2)重點、難點分析

  教學重點、難點是等比數列前項和公式的推導與應用.公式的推導中蘊含了豐富的數學思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數列求和問題中多有涉及,所以對等比數列前項和公式的要求,不單是要記住公式,更重要的是掌握推導公式的方法.等比數列前項和公式是分情況討論的,在運用中要特別注意和兩種情況.

  教學建議

 。1)本節(jié)內容分為兩課時,一節(jié)為等比數列前項和公式的推導與應用,一節(jié)為通項公式與前項和公式的綜合運用,另外應補充一節(jié)數列求和問題.

 。2)等比數列前項和公式的推導是重點內容,引導學生觀察實例,發(fā)現規(guī)律,歸納總結,證明結論.

  (3)等比數列前項和公式的推導的其他方法可以給出,提高學生學習的興趣.

  (4)編擬例題時要全面,不要忽略的情況.

  (5)通項公式與前項和公式的綜合運用涉及五個量,已知其中三個量可求另兩個量,但解指數方程難度大.

 。6)補充可以化為等差數列、等比數列的數列求和問題.

  教學設計示例

  課題:等比數列前項和的公式

  教學目標

 。1)通過教學使學生掌握等比數列前項和公式的推導過程,并能初步運用這一方法求一些數列的前項和.

 。2)通過公式的推導過程,培養(yǎng)學生猜想、分析、綜合能力,提高學生的數學素質.

  (3)通過教學進一步滲透從特殊到一般,再從一般到特殊的辯證觀點,培養(yǎng)學生嚴謹的學習態(tài)度.

  教學重點,難點

  教學重點是公式的推導及運用,難點是公式推導的思路.

  教學用具

  幻燈片,課件,電腦.

  教學方法

  引導發(fā)現法.

  教學過程

  一、新課引入:

  (問題見教材第129頁)提出問題:(幻燈片)

  二、新課講解:

  記,式中有64項,后項與前項的比為公比2,當每一項都乘以2后,中間有62項是對應相等的,作差可以相互抵消.

  (板書)即,①

  ,②

 、冢俚眉.

  由此對于一般的等比數列,其前項和,如何化簡?

  (板書)等比數列前項和公式

  仿照公比為2的等比數列求和方法,等式兩邊應同乘以等比數列的公比,即

 。ò鍟蹆啥送艘,得

 、埽

 、郏艿芒,(提問學生如何處理,適時提醒學生注意的取值)

  當時,由③可得(不必導出④,但當時設想不到)

  當時,由⑤得.

  于是

  反思推導求和公式的方法——錯位相減法,可以求形如的數列的和,其中為等差數列,為等比數列.

 。ò鍟├}:求和:.

  設,其中為等差數列,為等比數列,公比為,利用錯位相減法求和.

  解:,

  兩端同乘以,得

  ,

  兩式相減得

  于是.

  說明:錯位相減法實際上是把一個數列求和問題轉化為等比數列求和的問題.

  公式其它應用問題注意對公比的分類討論即可.

  三、小結:

  1.等比數列前項和公式推導中蘊含的思想方法以及公式的應用;

  2.用錯位相減法求一些數列的前項和.

  四、作業(yè):略

  【篇二】

  教學準備

  教學目標

  熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。

  教學重難點

  熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。

  教學過程

  【復習要求】熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。*

  【方法規(guī)律】應用數列知識界實際應用問題的關鍵是通過對實際問題的綜合分析,確定其數學模型是等差數列,還是等比數列,并確定其首項,公差(或公比)等基本元素,然后設計合理的計算方案,即數學建模是解答數列應用題的關鍵。

  一、基礎訓練

  1.某種細菌在培養(yǎng)過程中,每20分鐘*(一個*為兩個),經過3小時,這種細菌由1個可繁殖成()

  A、511B、512C、1023D、1024

  2.若一工廠的生產總值的月平均增長率為p,則年平均增長率為()

  A、B、

  C、D、

  二、典型例題

  例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是(n-1)Ap……,第n期(即后一期)的利息是Ap,問到第n期期末的本金和是多少?

  評析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時期到期,可以提出全部本金及利息,這是整取。計算本利和就是本例所用的有窮等差數列求和的方法。用實際問題列出就是:本利和=每期存入的金額[存期+1/2存期(存期+1)利率]

  例2:某人從1999到2002年間,每年6月1日都到銀行存入m元的一年定期儲蓄,若每年利率q保持不變,且每年到期的存款本息均自動轉為新的一年定期,到2003年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?

  例3、某地區(qū)位于沙漠邊緣,人與自然進行長期頑強的斗爭,到1999年底全地區(qū)的綠化率已達到30%,從2000年開始,每年將出現以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?問經過多少年的努力才能使全縣的綠洲面積超過60%.(lg2=0.3)

  例4、.流行性感冒(簡稱流感)是由流感病毒引起的急性呼吸道傳染病.某市去年11月分曾發(fā)生流感,據資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數多?并求這一天的新患者人數.