有理數的分類:
。1)按有理數的定義:
正整數
整數{零
負整數
有理數{
正分數
分數{
負分數
。2)按有理數的性質分類:
正整數
正數{
正分數
有理數{零
負整數
負數{
負分數
三角形的三邊關系:
在三角形中,任意兩邊和大于第三邊,任意兩邊差小于第三邊。
設三角形三邊為a,b,c
則
a+b>c
a+c>b
b+c>a
a-b
a-c
b-c
在直角三角形中,設a、b為直角邊,c為斜邊。
則兩直角邊的平方和等于斜邊平方。
在等邊三角形中,a=b=c
在等腰三角形中,a,b為兩腰,則a=b
在三角形ABC的內角A、B、C所對邊分別為a、b、c的情況下,c2=a2+b2-2abcosc
中心對稱與中心對稱圖形:
1.中心對稱:把一個圖形繞著某一個點旋轉180°,如果它能夠和另外一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心,這兩個圖形中的對應點叫做關于中心的對稱點。
2.中心對稱圖形:在平面內,一個圖形繞某個點旋轉180°,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
3.中心對稱的性質:(1)關于中心對稱的兩個圖形是全等形;
。2)在成中心對稱的兩個圖形中,連接對稱點的線段都經過對稱中心,并且被對稱中心平分;
(3)成中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
幾何變換法
在數學問題的研究中,,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。