小學(xué)四年級(jí)奧數(shù)題:牛吃草問(wèn)題解析
時(shí)間:2013-05-16 16:53:00 來(lái)源:無(wú)憂(yōu)考網(wǎng) [字體:小 中 大]解決牛吃草問(wèn)題的多種算法
歷史起源:英國(guó)數(shù)學(xué)家牛頓(1642—1727)說(shuō)過(guò):“在學(xué)習(xí)科學(xué)的時(shí)候,題目比規(guī)則還有用些”因此在他的著作中,每當(dāng)闡述理論時(shí),總是把許多實(shí)例放在一起。在牛頓的《普遍的算術(shù)》一書(shū)中,有一個(gè)關(guān)于求牛和頭數(shù)的題目,人們稱(chēng)之為牛頓的牛吃草問(wèn)題。
主要類(lèi)型:
1、求時(shí)間
2、求頭數(shù)
除了總結(jié)這兩種類(lèi)型問(wèn)題相應(yīng)的解法,在實(shí)踐中還要有培養(yǎng)運(yùn)用“牛吃草問(wèn)題”的解題思想解決實(shí)際問(wèn)題的能力。
基本思路:
、僭谇蟪觥懊刻煨律L(zhǎng)的草量”和“原有草量”后,已知頭數(shù)求時(shí)間時(shí),我們用“原有草量÷每天實(shí)際減少的草量(即頭數(shù)與每日生長(zhǎng)量的差)”求出天數(shù)。
、谝阎鞌(shù)求只數(shù)時(shí),同樣需要先求出“每天新生長(zhǎng)的草量”和“原有草量”。
③根據(jù)(“原有草量”+若干天里新生草量)÷天數(shù)”,求出只數(shù)。
基本公式:
解決牛吃草問(wèn)題常用到四個(gè)基本公式,分別是∶
(1)草的生長(zhǎng)速度=對(duì)應(yīng)的牛頭數(shù)×吃的較多天數(shù)-相應(yīng)的牛頭數(shù)×吃的較少天數(shù)÷(吃的較多天數(shù)-吃的較少天數(shù));
(2)原有草量=牛頭數(shù)×吃的天數(shù)-草的生長(zhǎng)速度×吃的天數(shù);`
(3)吃的天數(shù)=原有草量÷(牛頭數(shù)-草的生長(zhǎng)速度);
(4)牛頭數(shù)=原有草量÷吃的天數(shù)+草的生長(zhǎng)速度