【#初中二年級# #初二數(shù)學期末上冊重點#】人或多或少都會有些厭舊,單調(diào)乏味的學習形式總是缺少激情。靈活轉變學生的學習形式,能夠激發(fā)學生學習的熱情,保持學習的興趣愛好,提高學生的專注力。本篇文章是®無憂考網(wǎng)為您整理的《初二數(shù)學期末上冊重點》,供大家借鑒。
1.初二數(shù)學期末上冊重點 篇一
一次函數(shù)
(1)正比例函數(shù):一般地,形如y=kx(k是常數(shù),k>0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);
。2)正比例函數(shù)圖像特征:一些過原點的直線;
(3)圖像性質(zhì):
、佼攌>0時,函數(shù)y=kx的圖像經(jīng)過第一、三象限,從左向右上升,即隨著x的增大y也增大;
②當k<0時,函數(shù)y=kx的圖像經(jīng)過第二、四象限,從左向右下降,即隨著x的增大y反而減;
(4)求正比例函數(shù)的解析式:已知一個非原點即可;
。5)畫正比例函數(shù)圖像:經(jīng)過原點和點(1,k);(或另外一個非原點)
。6)一次函數(shù):一般地,形如y=kx+b(k、b是常數(shù),k?0)的函數(shù),叫做一次函數(shù);
(7)正比例函數(shù)是一種特殊的一次函數(shù);(因為當b=0時,y=kx+b即為y=kx)
。8)一次函數(shù)圖像特征:一些直線;
。9)性質(zhì):
①y=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個單位長度而得;(當b>0,向上平移;當b<0,向下平移)
、诋攌>0時,直線y=kx+b由左至右上升,即y隨著x的增大而增大;
、郛攌<0時,直線y=kx+b由左至右下降,即y隨著x的增大而減。
、墚攂>0時,直線y=kx+b與y軸正半軸有交點為(0,b);
、莓攂<0時,直線y=kx+b與y軸負半軸有交點為(0,b);
。10)求一次函數(shù)的解析式:即要求k與b的值;
(11)畫一次函數(shù)的圖像:已知兩點;
用函數(shù)觀點看方程(組)與不等式:
(1)解一元一次方程可以轉化為:當某個一次函數(shù)的值為0時,求相應的自變量的值;從圖像上看,這相當于已知直線y=kx+b,確定它與x軸交點的橫坐標的值;
。2)解一元一次不等式可以看作:當一次函數(shù)值大(。┯0時,求自變量相應的取值范圍;
。3)每個二元一次方程都對應一個一元一次函數(shù),于是也對應一條直線;
(4)一般地,每個二元一次方程組都對應兩個一次函數(shù),于是也對應兩條直線。從“數(shù)”的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值;從“形”的角度看,解方程組相當于確定兩條直線交點的坐標;
2.初二數(shù)學期末上冊重點 篇二
全等三角形
一、全等三角形:
1.定義:能夠完全重合的兩個三角形叫做全等三角形。
2.全等三角形的性質(zhì)
、偃热切蔚膶呄嗟、對應角相等。
、谌热切蔚闹荛L相等、面積相等。
③全等三角形的對應邊上的對應中線、角平分線、高線分別相等。
3.全等三角形的判定
邊邊邊:三邊對應相等的兩個三角形全等(可簡寫成“SSS”)
邊角邊:兩邊和它們的夾角對應相等兩個三角形全等(可簡寫成“SAS”)
角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“ASA”)
角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成“AAS”)
斜邊、直角邊:斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“HL”)
4.證明兩個三角形全等的基本思路:
二、角的平分線:
1.(性質(zhì))角的平分線上的點到角的兩邊的距離相等
2.(判定)角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上
三、學習全等三角形應注意以下幾個問題:
1.要正確區(qū)分“對應邊”與“對邊”,“對應角”與“對角”的不同含義;
2.表示兩個三角形全等時,表示對應頂點的字母要寫在對應的位置上;
3.有三個角對應相等或有兩邊及其中一邊的對角對應相等的兩個三角形不一定全等;
4.時刻注意圖形中的隱含條件,如“公共角”、“公共邊”、“對頂角”;
3.初二數(shù)學期末上冊重點 篇三
分式除法法則:
分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
提示:
。1)分式與分式相乘,若分子、分母是單項式,可先將分子、分母分別相乘,然后約去公因式,化為最簡分式;若分子、分母是多項式,先把分子、分母分解公因式,看能否約分,然后再相乘;
。2)當分式與整式相乘時,要把整式與分式的分子相乘作為積的分子,分母不變
。3)分式的除法可以轉化為分式的乘法運算;
。4)分式的乘除混合運算統(tǒng)一為乘法運算。
、俜质降某顺ɑ旌线\算順序與分數(shù)的乘除混合運算相同,即按照從左到右的順序,有括號先算括號里面的;
②分式的乘除混合運算要注意各分式中分子、分母符號的處理,可先確定積的符號;
③分式的乘除混合運算結果要通過約分化為最簡分式(分式的分子、分母沒有公因式)或整式的形式。
4.初二數(shù)學期末上冊重點 篇四
函數(shù)及其相關概念
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
5.初二數(shù)學期末上冊重點 篇五
四邊形
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
平行四邊形的判定
1.兩組對邊分別相等的四邊形是平行四邊形;
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個角是直角的平行四邊形。
矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
矩形判定定理:
1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
菱形的定義:鄰邊相等的平行四邊形。
菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
菱形的判定定理:
1.一組鄰邊相等的平行四邊形是菱形。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)
正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
正方形的性質(zhì):四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1.鄰邊相等的矩形是正方形。
2.有一個角是直角的菱形是正方形。